空间激光通信技术
发布时间:2006-10-14 8:02:05   收集提供:gaoqian
王世启


概述

  空间激光通信是指用激光束作为信息载体进行空间包括大气空间、低轨道、中轨道、同步轨道、星际间、太空间通信。

激光空间通信与微波空间通信相比,波长比微波波长明显短,具有高度的相干性和空间定向性,这决定了空间激光通信具有通信容量大、重量轻、功耗和体积小、保密性高、建造和维护经费低等优点。

 1、大通信容量:激光的频率比微波高3-4个数量级(其相应光频率在1013-1017 Hz)作为通信的载波有更大的利用频带。光纤通信技术可以移植到空间通信中来,目前光纤通信每束波束光波的数据率可达20Gb/s以上,并且可采用波分复用技术使通信容量上升几十倍。因此在通信容量上,光通信比微波通信有巨大的优势。

 2、低功耗:激光的发散角很小,能量高度集中,落在接收机望远镜天线上的功率密度高,发射机的发射功率可大大降低,功耗相对较低。这对应于能源成本高昂的空间通信来说,是十分适用的。

 3、体积小、重量轻:由于空间激光通信的能量利用率高,使得发射机及其供电系统的重量减轻;由于激光的波长短,在同样的发散角和接收视场角要求下,发射和接收望远镜的口径都可以减小。摆脱了微波系统巨大的碟形天线,重量减轻,体积减小。

  4、高度的保密性激光具有高度的定向性,发射波束纤细,激光的发散角通常在毫弧度,这使激光通信具有高度的保密性,可有效地提高抗干扰、防窃听的能力。

  5、激光空间通信具有较低的建造经费和维护经费。

技术难点

空间技术的发展和建立全球信息社会的需要,推动着空间光通信技术的进步。空间光通信避开了大气光信道不稳定性的影响,需要解决的关键问题是相对运动光学收、发天线之间的瞄准、接收和跟踪问题等。

1、空间激光通信链路的快速、精确的捕获、跟踪和瞄准(ATP)技术,是保证空间远距离光通信的核心技术。

(1)、捕获(粗跟踪)系统:激光信标发射的光束很窄,在相距极远的两卫星之间,必须保证信标的发射波束覆盖接收机的接收天线,接收端能够捕捉跟踪发射端的窄光束。由于姿态监测控制系统误差、参照系计算误差、卫星的腾空浮动和振动以及其它系统误差的存在,在收发双方互相对准之后总有一个不确定角。空间捕获目标的范围在±1°~±20°或更大,通常采用CCD来实现。

  为了缓解对空间瞄准、捕获和跟踪系统苛刻的要求,同时加快通信链路建立速度,接收机的视场角一定要宽,为几个毫弧度,灵敏度为-110dbW,跟踪精度为几十个毫弧度,可这样接收的背景辐射功率就会迅速上升,掩埋其中的信标信号。解决这一问题的关键在于接收机中使用超窄带宽、高透射率的光学滤波器。

(2)、跟踪、瞄准(精跟踪)系统:系统完成目标捕获后,对目标进行瞄准和实时跟踪。通常采用四象限红外探测器QD或Q-APD高灵敏度位置传感器来实现,并配以相应的电子学伺服控制系统,精跟踪要求视场角为几百微弧度,跟踪灵敏度为-90dbW,跟踪精度为几微弧度。

2、发射机激光器的超高速率调制技术

目前各国空间激光通信实验的码率都在1Gb/s以上,而且不断提高,为了增大通信容量,在一些方案中采用同一波长的两路旋向相反的圆偏振光同时传送,从而使通信容量加倍。在超高速调制的同时又要产生足够的功率用于广阔的空间距离传输,因此除研究大功率半导体激光器以外,国外还在研究采用激光二极管阵列的方案。

  3、高灵敏度抗干扰的接收机技术

  卫星之间的距离可长达40000km 而激光波束的强度是按距离的平方递减,也就是说衰减可能达到-152dB。接收机要有超高的灵敏度才行,否则背景辐射等噪声会使误码率达到不可接收的程度。目前除提高检测器本身灵敏度外,还在探讨外差接收、纠错编码等途径。

  4、精密、可靠、高增益的收发天线技术

  为完成系统的双向互逆跟踪,光通信系统采用收发合一天线,隔离度近100%的精密光机组件(又称万向支架)。由于半导体激光器光束质量一般较差,要求天线增益要高,另外,为适应空间系统,天线(包括主副镜,合束、分束滤光片等光学元件总体结构紧凑、轻巧、稳定可靠。国际上现有系统的天线口径一般为几厘米至25厘米。

  5、卫星与地面之间的传输

  空间数据通信网最终还是要与地面连接 若卫星与地面之间不能采用激光通信和卫星之间的高码率匹配 卫星--地面链路将成为全球通信中的制约环节。在大气传输中激光会受到散射、折射、背景辐射等多种因素的影响,除衰减大大增强之外,波前畸变、强度抖动、多径、云层遮断等现象均可发生,这些不利因素使通信距离急剧下降,使光信号受到严重的干扰,甚至脱靶。如何保证随机信道条件下系统正常工作是十分重要的。

目前除选择气候合适的地区之外,还采用光波与毫米波组成联合通信网络,经数据处理与压缩后用微波与地面通信,光波与毫米波信息间的交换是链路的关键问题之一。

  6、网络控制技术

  空间激光通信的协议和控制包括从低层的调制激光束的编码和同步、失效链路检测、设计合适的数据链路协议以及到高层的链路建立、信息的包传送、拥塞防护、全球兼容等各种问题。

影响

  卫星激光通信的出现是现代信息社会对大容量、长距离、低成本通信的需求的必然结果,而它的优点也表明了卫星激光通信能够承担此重任。


----《通信世界报》
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50