PON网络中视频业务传送过程中的拉曼串扰
发布时间:2006-10-14 4:08:39   收集提供:gaoqian
迈克尔·安威斯,克立·李特为 王军 摩托罗拉宽带通讯部


  摘要:本文主要分析了那些基于ITU-T G.983.3标准的PON系统在传送调制模拟视频时所出现的拉曼耦合效应。我们发现拉曼效应是存在的,不过也是可以控制的,在系统参数得到优化的情况下,拉曼效应可以控制在忽略不计的水平。

  关键词:PON 拉曼效应

1、前言

  G.983系列标准描述了一类PON网络,这些网络基于波分双工和时分复用技术[1]。通常人们称这些网络为宽带PON(即BPON),BPON具备数字传输的能力,速率从155Mb/s到1244Mb/s不等。这些网络是第一种被定义为专业数字式的网络,具有两个波长:1310nm用于上行链路,1550nm用于下行链路。

  自从基本的G.983.1系统问世以来,人们越来越明白视频覆盖业务将成为一种颇有价值的业务。由于视频业务从传统意义来说是一种广播业务,因此为PON系统增加一个广播通道就显得非常实用和便利。后来的G.983.3标准决定使用WDM技术[2],国际电信联盟(ITU)公布的G.986.3建议提出了通过波长分配提高服务能力的宽带接入系统(参看图1)。这个建议指定1490nm波长用于下行的语音和数据信号,1550nm波长用于下行的视频信号,1310nm用于上行的语音和数据信号。下行数字发射波长范围一般是很窄的,从最初的100nm宽变成更小的20nm宽,中心波长为1490nm,而上行波长范围依然在以1310 nm为中心的100nm区域内。

  新的波长分配方案提出了一对被称为“增加带宽”的应用,包括密集波分复用(DWDM)点对点覆盖业务,以及一种广播视频覆盖业务。利用波长来完成所承载视频业务的传播,然而,这种标准(G.983.3)并没有规定精确的波长、功率电平以及信号模式。因此,这等于说由系统供应商来定义视频业务传送时的信号参数。



  综合各方面因素的考虑,波长分配方案是最好的。许多网络设备和器件制造商已经接受了ITU的G.983.3建议。因此,今天许多光纤网络运营商都正在安装这种系统,这些系统由光线路终端(OLT)、光网络终端(ONT)、WDM耦合器和1×N分波器组成(图1)。

  G.983.3方案中的“增加带宽”处于EDFA从1530nm到1560nm通带区域内,这就允许使用廉价的放大器来覆盖波长,这对视频传输的场合而言就显得尤为重要。不仅如此,G.983.3标准也可以在B-PON下行波长和覆盖波长之间形成一条很宽的保护波段,从而使滤波隔离地更容易些。

  无论如何,任何波长分配计划都会在150nm范围内放置2个下行波长,这样互相之间就产生了拉曼效应。作为G.983.3系统里的一个事实,我们将分析这种效应对PON系统的实际影响到底如何?

2、理论

  G.983.3系统中的情形是这样的:数字信号(1490nm波长,功率大约为0 dBm)扮演着模拟视频信号波长(C波段波长,功率大约为17 dBm)的拉曼泵浦的角色。这种效应已经由Phillips [3]用公式表示出来。其关键结果串扰率(CCR)由公式一表示。由于拉曼效应具有低通(low-pass)特性,因此越低的视频通道性能降级地就越厉害。



  从表一我们可以看到详细参数定义。起源于一个NRZ信号光谱的数字信号有效调制指数mint表示为:


  应该要说明的是公式2是近似的表述,而不是完全相同的表述。在这里,公式2发现调制指数mint通过一个 因子被夸大,因此也就过高地估计(overestimates)了CCR数值(达到5dB)。这可以通过计算总的数字信号功率来证实上述推断。我们也因此证明我们的公式2是正确的,在以下的计算里我们将采用这个公式。表一提供了所有使用过的参数值。

表一:完整的参数列表



  通过给予的这些参数,我们可以计算出给模拟视频信号造成的所有CNR劣化。理解CNR与链路距离之间的关系是十分重要的,因为无论是接收功率还是拉曼干涉都与距离有很大关系。相关结果显示在图2中。在这里,损耗诱导降级与拉曼诱导降级(degradation)之间达到了一种平衡。图中显示,CNR曲线在感兴趣的距离上都比较平坦,可以预期对业务的影响是比较小的。



  在那些需要额外盈余(margin)的地方,有一种非常简单的方法来减少拉曼效应所带来的影响。由于拉曼影响仅存在低通道领域,因此增加这些通道的调制指数就可以摆脱拉曼效应的影响。

  在北美地区,只有通道2到6(channels 2 through 6)属于低波段区域,通道7(channel 7)高于108MHz,比通道2高两倍。因此通道7和更高的通道都不受拉曼干涉的影响。

3. 试验

  G.983.3覆盖系统的性能已经通过一个商用三工器(triplexer)在实验室得到验证。视频发射机包含了一个能产生82个模拟通道的矩阵发生器,一个摩托罗拉GX2外调制1550nm发射机和一个EDFA放大器。数据发射机是采用了量子桥(编者注:该公司已经被摩托罗拉收购)QB5000 OLT (NRZ 622 Mb/s)中的1490nm下行发射机代替。这两个发射机都通过衰减器来将其输出功率控制在要求水平,接着再耦合进一根单独PON光纤上,该光纤配有WDM器件。而光纤支线(feeder fiber)是10公里长,非常接近拉曼效应最坏情况下所对应的的光纤长度。在光纤的输出端连接一个分路器(splitter),接着再增加一个衰减器来控制传送到ONT triplexer上的视频功率。在所有的状况下,模拟视频功率控制在–4.5 dBm左右,这对系统而言是最理想的灵敏度。

  CNR,CSO以及CTB性能指标通过在整个波段随选一个通道来测量的。在所有的情况下,CSO和CTB都处于高50领域,因此不会产生失真。对通道CNR测量的结果显示表二上。一共有四种情况,第一种情况是在完全没有数据信号的状况下进行视频操作,所有的通道性能表现都是很好的。注意甚高通道都低于48 dBc,不过我们发现这主要是由triplexer电路的输出段额外RF损耗引起的,而不是光信号本身的原因。

表2:G.983.3 系统在四种不同情况下的CNR测试结果



  第二种情况是数字功率为–6 dBm(在实际应用中最低的)。只有通道2出现了性能降级,其他通道依旧工作在令人满意的48 dBc CNR上。当光纤长度达到10公里,拉曼效应增大,这也是理论上所预期的。第三种情况是数字功率运行在–3 dBm(在实际应用中的最高点),在这种情况下,我们发现低通道受到拉曼串扰的严重影响,它们的CNR值也降到48 dBc以下。注意这种情况比实际中最差情况更糟糕一些,实际最差的情况是10公里处的视频功率为-2dBm。在本次试验过程中,视频水平(video level)比我们在野外实际测量的要低2.5dB,因此,本次测试是有一定实际意义的。

  第三种情况跟第四种情况类似,只不过在第四种情况里,那些受影响的低通道都被预先补偿了2dB。这增加了信号的强度,使这些通道的CNR值恢复到48 dB以上。我们注意到这并没有给发射机性能造成不适当的影响。第四种情况最后证明了G.983.3系统在最糟糕的状况下仍能通过对低通道的预加重来优化系统性能。

4. 参考文献

1. “Broadband optical access systems based on Passive Optical Networks (PON)”, ITU-T Rec. G.983.1, International Telecommunications Union (1998).

2. “A broadband optical access system with increased service capability by wavelength allocation”, ITU-T Rec. G.983.3, International Telecommunications Union (2001).

3. M. R. Phillips and D. M. Ott, “Crosstalk due to optical fiber nonlinearities in WDM CATV lightwave systems,” J. Lightwave Technol., vol.17, pp. 1782–1792, Oct. 1999.

4. H. Kim, K. H. Han, and Y. C. Chung, “Performance Limitation of Hybrid WDM Systems Due to Stimulated Raman Scattering,” IEEE Photon.Tech. Lett., vol. 13, pp. 1118-1120, Oct. 2001.


摘自 光纤新闻网
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50