毫米波技术应用及其进展
发布时间:2006-10-14 4:08:32   收集提供:gaoqian
毫米波技术应用及其进展 [摘要] 介绍了毫米波技术在通信、雷达、制导、电子对抗和激光光谱学等方面的 应用及相应的毫米波元件和器件的进展。 关键词:毫米波 系统 元件 器件 1引言 毫米波的工作频率介于微波和光之间,因此兼有两者的优点。它具有以下主要特 点: 1)极宽的带宽。通常认为毫米波频率范围为26.5~300GHz,带宽高达273.5GHz。 超过从直流到微波全部带宽的10倍。即使考虑大气吸收,在大气中传播时只能使用四 个主要窗口,但这四个窗口的总带宽也可达135GHz,为微波以下各波段带宽之和的5 倍。这在频率资源紧张的今天无疑极具吸引力。 2)波束窄。在相同天线尺寸下毫米波的波束要比微波的波束窄得多。例如一个 12cm的天线,在9.4GHz时波束宽度为18度,而94GHz时波速宽度仅1.8度。因此可以分 辨相距更近的小目标或者更为清晰地观察目标的细节。 3)与激光相比,毫米波的传播受气候的影响要小得多,可以认为具有全天候特性。 4)和微波相比,毫米波元器件的尺寸要小得多。因此毫米波系统更容易小型化。 由于毫米波的这些特点,加上在电子对抗中扩展频段是取得成功的重要手段。毫 米波技术和应用得到了迅速的发展。 2毫米波技术的应用 表面上看来毫米波系统和微波系统的应用范围大致是一样的。但实际上两者的性 能有很大的差异,优缺点正好相反。因此毫米波系统经常和微波系统一起组成性能互 补的系统。下面分述各种应用的进展情况。 2.1毫米波雷达 毫米波雷达的优点是角分辨率高、频带宽因而有利于采用脉冲压缩技术、多普勒 颇移大和系统的体积小。缺点是由于大气吸收较大,当需要大作用距离时所需的发射 功率及天线增益都比微波系统高。下面是一些典型的应用实例。 2.1.1 空间目标识别雷达 它们的特点是使用大型天线以得到成像所需的角分辨率和足够高的天线增益,使 用大功率发射机以保证作用距离。例如一部工作于35GHz的空间目标识别雷达其天线 直径达36m。用行波管提供10kw的发射功率,可以拍摄远在16,000km处的卫星的照片。 一部工作于94GHz的空间目标识别雷达的天线直径为13.5m。当用回族管提供20kw的发 射功率时,可以对14400km远处的目标进行高分辨率摄像。 2.1.2汽车防撞雷达 因其作用距离不需要很远,故发射机的输出功率不需要很高,但要求有很高的距 离分辨率(达到米级),同时要能测速,且雷达的体积要尽可能小。所以采用以固态 振荡器作为发射机的毫米波脉冲多普勒雷达。采用脉冲压缩技术将脉宽压缩到纳秒级, 大大提高了距离分辨率。利用毫米波多普勒颇移大的特点得到精确的速度值。 2.1.3直升飞机防控雷达 现代直升飞机的空难事故中,飞机与高压架空电缆相撞造成的事故占了相当高的 比率。因此直升飞机防控雷达必须能发现线径较细的高压架空电缆,需要采用分辨率 较高的短波长雷达,实际多用3mm雷达。 2.1.4精密跟踪雷达 实际的精密跟踪雷达多是双频系统,即一部雷达可同时工作于微波频段(作用距 离远而跟踪精度较差)和毫米波频段(跟踪精度高而作用距离较短),两者互补取得 较好的效果。例如美国海军研制的双频精密跟踪雷达即有一部9GHz、300kw的发射机和 一部35GHz、13kw的发射机及相应的接收系统,共用2.4m抛物面天线,已成功地跟踪了 距水面30m高的目标,作用距离可达27km。双额还带来了一个附加的好处:毫米波频率 可作为隐蔽频率使用,提高雷达的抗干扰能力。 2.1.5炮弹弹道测量雷达 这类雷达的用途是精确测定敌方炮弹的轨迹,从而推算出敌方炮兵阵地的位置, 加以摧毁。多用3mm波段的雷达,发射机的平均输出功率在20W左右。脉冲输出功率应 尽可能高一些,以减轻信号处理的压力。 2.2导弹的末制导系统 由于毫米波制导兼有微波制导和红外制导的优点,同时由于毫米波天线的旁瓣可 以做得很低,敌方难于截获,增加了集团干扰的难度。加之毫米波制导系统受导弹飞 行中形成的等离子体的影响较小,国外许多导弹的未制导采用了毫米波制导系统。例 如美国的“黄蜂”、“灰背隼”、“STAFF’,英国的“长剑”,前苏联的“SA-10” 等导弹都是。毫米波制导系统最初有两种工作方式:一是主动方式,这种方式作用距 离远,但由于角闪烁效应及其它一些造成指向摆动的因素会影响制导精度。二是被动 方式,这时没有角闪烁效应,制导精度很高,但作用距离有限。为此经常将两者结合 起来使用。即在距离较远处采用主动方式,当接近目标时转为被动方式。在80年代以 后,又发展了一种“半主动”体制,即在导弹的引导头中没有毫米波发射机,只有接 收机。发射机装在另外的武器平台上,对目标进行照射。引导头接收从目标反射回来 的信号进行制导。也能既保证作用距离又避免角闪烁效应。还因为发射机和导弹不在 一起,提高了抗干扰能力。 2.3毫米波电子对抗 由于毫米波雷达和制导系统的发展,相应的电子对抗手段也发展起来了。据报道 美国的电子对抗设备中侦察部分110GHz以下已实用化,正在向300GHz发展。干扰部分 40GHz以下已实用化,正在向110GHz发展。由于毫米波雷达和制导系统的波束很窄, 天线的旁瓣可以做得很低,使侦察和有源干扰都比较困难。因此无源干扰在毫米波段 有较大的发展。目前最常用的是投放非谐振的毫米波箔片和气溶胶,对敌方毫米波雷 达波束进行散射。它可以干扰较宽的频段而不必事先精确测定敌方雷达的频率。也可 以利用爆炸、热电离或放射性元素产生等离子体对毫米波进行吸收和散射以干扰敌方 雷达。在毫米波段也可以利用隐身技术。对付有源毫米波雷达时,和在微波波段一样 可以采用减小雷达截面的外形设计,或者在表面涂敷铁氧体等毫米波吸收材料以减小 反射波的强度。对于通过检测金属目标的低毫米波辐射与背景辐射之间的反差来跟踪 目标的无源雷达,则要在目标表面涂敷毫米波辐射较强的伪装物,使其辐射和背景辐 射基本相等从而使目标融合于背景中。 2.4毫米波通信系统 毫米波通信系统可以分为地球上的点对点通信和通过卫星的通信或广播。现在地 球上的点对点毫米波通信基本上只用于对保密要求较高的接力通信中。因为地面上的 干线通信基本上已实现了光缆化。而在卫星通信中则由于毫米波段频率资源丰富而得 到了迅速发展。 但在星际通信时则使用了5mm(60GHz)波段,因为在此频率处大气损耗极大,地 面无法对星际通信内容进行侦听。而在星际由于大气极为稀薄,不会造成信号的衰落。 美国的“战术、战略和中继卫星系统”就是一个例子。该系统由五颗卫星组成,上行 频率为44GHz,下行频率为20GHz,带宽为2GHz,星际通信频率为60GHz。 2.5在激光光谱学中的应用 为进行光谱测量,在早期的激光光谱仪中常用微波对激光进行调制以得到频率的 连续变化。但相对于光的频率而言,微波调制所能得到的频率变化范围是太窄了。在 毫米波技术成熟以后,由于用它对激光进行调制可以得到宽得多的频率变化范围,自 然就取代微波而被用于激光光谱仪中去了。 3毫米波技术基础研究的进展 毫米波技术应用的发展是建立在毫米波元器件发展的基础上的。应用的需要又反 过来推动了元器件的发展。同时材料、工艺和计算机辅助设计的发展也为元器件的发 展创造了条件。这里介绍部分元器件的发展情况。 3.1半导体器件 在毫米波系统中应用的半导体器件有混频器、低噪声放大器、倍频器、功率放大 器及振荡器等。在40GHz(有些器件可达60GHz)以下,这些器件已有批量生产的商品 可供选用。 3.1.1混频器 现在混频器已可工作到1000GHz。例如日本报道了一种工作于200GHz的SIS混频器, 在4K的工作温度下在204GHz处噪声温度为150K。而荷兰则报道了能工作在1000GHz的 SIS混频器,它在4K的工作温度下,在950~1050GHz范围内,噪声温度在1000~2000K 之间。 3.1.2 低噪声放大器 在实验室里可做出性能更好的放大器。例如在60GHz频段可做到增益大于9dB、噪 声系数小于O.8dB;而在95GHZ频段可做到增益大于8.2dB、噪声系数小于1.3dB。 3.1.3集成接收前端 集成接收前端是将低噪声放大器、混频器和本振(有的还包括前置中放)做在一 块集成电路上。8mm波段已有商品。例如有一种产品可工作在26~40GHz,中频输出为 2~16GHz,噪声系数3.5dB,增益高达42dB,射频一本振隔离可达45dB。另外还有报 道可工作到100GHz的接收前端,中频输出频率在L波段。当工作在4K的条件下时,在 95GHz处噪声温度为20K。在边频(80和120GHz)处噪声温度为80K。 3.1.4功率放大器 半导体功率放大器现在的水平大致为在40GHz以下时输出的平均功率为500mw(脉 冲功率可达1W),增益20dB;在60GHz时输出功率约500mw,增益降至14dB;在94GHz 时输出功率为60mW增益约4dB。在目前情况下若不采用功率合成技术,毫米波半导体 功率放大器的输出功率只能在瓦级。但这并不妨碍它得到广泛的应用,因为许多用 量很大的应用例如汽车防撞雷达、本振和仪器等有瓦级的功率已经足够了。 3.2真空器件 真空器件在需要高频大功率的场合可发挥其优势。真空器件可以分为传统器件和 相对论器件两大类。 3.2.1互传统器件 返波管是最早用来产生毫米波振荡的器件。目前多用在500GHz以下产生5~50mw 的输出功率。但也有输出更大功率的,例如法国的TH4237就可在75~110GHz范围里 产生11W的输出功率。返波管还是目前工作频率最高的器件,美国犹他州大学研制了 一个工作在600~1800GHz频段可输出1mW功率的近波管。实际已工作在亚毫米波段的 高端了(从O.5mm到0.17mm)。 磁控管是大功率振荡器,早期的毫米波雷达的发射机基本上都是用磁控管制成 的,即使现在磁控管还是广泛应用在要求不太高的雷达中。普通脉冲磁控管的峰值 输出功率在35GHz可达125kw,在70GHz时约10kw,95GHz时约8kw。但占空比较小, 在千分之一左右。同轴磁控管的脉冲输出功率与普通脉冲磁控管差不多,但占空比 可达到10%以上,因此平均功率较普通磁控管高近百倍,大大提高了雷达的作用距 离。为了提高雷达的抗干扰能力,和在微波波段一样制成了电调谐的捷变频磁控管。 但由于磁控管的频率稳定度较低,无法做成相参雷达。在毫米波行波管发展起来以 后,许多要求高的雷达纷纷采用性能更好的行波管放大链做雷达发射机了。 行波管不仅用于雷达中,还大量用于电子对抗和激光光谱仪中。在微波波段中 普遍使用的螺旋线行波管由于工作电压的限制,只能做到8mm波段。目前已知功率最 大的是汤姆逊公司的27.5~30GHz输出200W的行波管,增益为55dB。工作在高频端的 代表是休斯公司的工作在41~45GHz输出功率为80W的行波管。倍频程大功率管的代 表则是诺斯洛普公司的20~40GHz输出功率为100W的行波管,其增益为40dB。雷声公 司研制了工作于42GHz输出功率为160W的行波管,是已知的在8mm波段高频端连续波 输出功率最大的行波管,但增益只有24dB。此外休斯公司还研制了一批脉冲工作的 螺旋线行波管,但脉冲输出功率也只在100~200W之间。在毫米波段没有输出功率 从几十毫瓦到见瓦的宽带螺旋线行波管,这是因为在毫米波段,这类行波管的效率 太低,而工作电压又太高的缘故。 耦合腔行波管(包括其变形梯形线行波管)则工作频率和输出功率都可以高得 多。8mm波段大功率的代表是VTAS700,工作在34.5~35.5GHz时脉冲输出功率可达 30kW。大平均功率的代表则是YH1048,在28~30GHz范围内可输出1kw的平均功率。 VTW5795则是3mm波段大脉冲功率行波管的典型,它能在95~96GHz范围输出8kw的脉 冲功率。而985H则可在84~86GHz的频带里输出200W的平均功率,增益可达47dB。 分布互作用放大器和振荡器(EIA和EIO)。EIA是一种大功率的毫米波放大器, 其中有一种工作频率在高达220GHz时仍可有60W的峰值功率输出(平均功率0.5W); 另一种则在95GHz处有2.8kw的峰值功率输出(平均功率100W),增益38dB,但带 宽只有400MHz。EIO则是一种大功率振荡器。瓦里安公司研制了一系列的EIO,从 30GHz直到300GHz,机械调谐带宽为2%~4%。在30~40GHz时输出功率可达1kw。 频率升高时输出功率将下降。 近年继微波功率模块之后又研制成了毫米波功率模块(MMPM),即将小型化 行波管、前置固态放大器、增益均衡器、调制器和高压电源都集成在一起。它的 体积很小,可以满足相控阵系统的需要。使用也很方便,只要接上电源,送人毫 米波信号,模块就可以工作了。例如诺斯洛普公司研制的一种MMPM工作在18~40 GHz频段、输出功率100W、饱和增益50dB、小信号增益56dB长200mm、宽90mm、厚 20mm、重0.6kg。 3.2.2相对论器件 相对论器件是回族管、虚阴极振荡器、契伦可夫发生器等的总称。本文只讨 论现在用得较多的回旋管。由于它是快波器件,不受传统微波器件中电子与波互 作用空间的线尺寸和频率成反比规律的限制,在毫米波段其尺寸比传统器件大得 多,输出功率也大得多,且与频率的关系较小。例如瓦里安公司研制了一套毫米 波回旋管,覆盖了28~70GHz各频段,输出功率均在200kW左右,注电压均为80kV, 注电流均为8A。这些管子都可以工作在连续波状态,如果只工作在脉冲状态输出 功率还可以大得多。例如用在极轨雷达发射机中的35GHz脉冲回旋行波管输出功 率400kW、增益50dB、效率35%。相对论器件的缺点是工作电压高(至少40kV), 还要很强的磁场且对磁场的分布有很严格的要求。目前还只能用电磁铁来提供所 需的磁场。这给使用带来了很大的困难。现在许多国家都在研制包装式回旋管 (即用永磁体提供磁场的回旋管),但还未见试验成功的报告。 3.3毫米波元件 虽然许多微波元件经过缩小尺寸以后可以工作在毫米波段,实际上在毫米波 段也确实用了不少这类元件。但在实际工作中随着频率上升,波导的尺寸越缩越 小,功率容量大大下降。8mm波段的波导还能传输50kw的功率,到3mm波段就只能 传送不到20kw的功率了。远小于回族管200kw的输出功率。同时损耗也随频率很 上升,在8mm波段约为0.6dB/m,3mm波段就上升到了4dB/m,到1mm波段达到了 14dB/m。因此人们一直在寻找适合毫米波使用的新型元件。现在比较成熟的有 槽波导和介质波导两种。前者体积较大,适合于3mm波段和更高频率使用。在俄 罗斯已有成套的槽波导元件和槽波导可供选用。后者则有多种形式。目前用得最 多的是镜像介质波导和绝缘镜像介质波导。现在已可利用介质波导制成定向耦合 器、谐振器、滤波器、移相器、混频器和振荡器等元件。可以把它们集成在一起 做成毫米波接收前端、表面波天线和表面波天线阵等毫米波集成电路。目前这些 集成电路已可工作到3mm波段,并在向更高的波段发展。 在毫米波中为了解决用常规波导制成的谐振腔的Q值低的问题,发展了一种 由两个反射面(往往一个为抛物面,一个为平面。也可以两个都是抛物面)所构 成的准光腔。其Q值可做到几千甚至超过一万。但在8mm波段时体积稍大了一些。 4结束语 毫米波技术是一门正在发展中的学科。发展毫米波技术对巩固国防和发展国 民经济都有重大意义。众所周知,要在现代战争中立于不败之地,取得制电磁权 是极其重要的。而具有毫米波对抗能力则是取得制电磁极的一个重要方面。从发 展国民经济的角度看,现在已进入信息社会时代,仅从毫米波的大信息容量这 一点就可见其重要性,更何况毫米波技术在汽车和直升飞机的自动驾驶、遥感技 术、激光光谱技术和射电天文学等领域都是不可或缺的。因此我们必需抓紧发展 毫米波技术。 毫米波技术的发展需要两个基础。一是理论的发展,在毫米波段无论是系统 的构成还是元器件的设计制造都出现了许多新概念和新思想,需要进行理论研究, 给出新的设计方法。二是材料科学的发展,毫米波元器件的发展需要更好的材料 的支持。例如半导体器件需要更好的MBE材料,旋磁器件需要在毫米波段损耗小 的旋磁材料,真空器件需要磁能积更高的磁性材料等。限于篇幅,本文对这两项 均未能进行讨论,同时毫米波技术是一门涉及面很广,发展很快的学科。而作者 知识面有限,本文仅能介绍其中一些方面的进展情况,起抛砖引玉之作用。
 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50